
第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem A
Prefix Sums

(Time Limit: 1 second)

Let 𝑛𝑛 be a positive integer and 𝑎𝑎𝑖𝑖 ∈ {1,2,3} for all 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛}. We want to perform 𝑛𝑛
operations, each in one of the following two forms:

 Calculate 𝑎𝑎1 + 𝑎𝑎2 + ⋯+ 𝑎𝑎𝑘𝑘 for a given 𝑘𝑘 ∈ {1,2, … ,𝑛𝑛}.
 Update 𝑎𝑎𝑖𝑖 to 𝑥𝑥 given 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛} and 𝑥𝑥 ∈ {1,2,3}.

Input Format

The input begins with 𝑛𝑛, 𝑎𝑎1, 𝑎𝑎2, …, 𝑎𝑎𝑛𝑛, where two consecutive numbers are separated either
by space(s) or newline character(s). The 𝑛𝑛 operations are specified in the order in which they are to
be performed. In detail, we specify each operation in one of the following two ways:

 An operation of the form “sum 𝑘𝑘”, where 𝑘𝑘 ∈ {1,2, … ,𝑛𝑛}, asks to calculate 𝑎𝑎1 + 𝑎𝑎2 + ⋯+ 𝑎𝑎𝑘𝑘.
 An operation of the form “update 𝑖𝑖 𝑥𝑥”, where 𝑖𝑖 ∈ {1,2, … ,𝑛𝑛} and 𝑥𝑥 ∈ {1,2,3}, asks to update

𝑎𝑎𝑖𝑖 to 𝑥𝑥. Note that 𝑥𝑥 may equal 𝑎𝑎𝑖𝑖, in which case the update does nothing.

Output Format

For each operation of the form “sum 𝑘𝑘”, where 𝑘𝑘 ∈ {1,2, … , 𝑛𝑛}, output 𝑎𝑎1 + 𝑎𝑎2 + ⋯+ 𝑎𝑎𝑘𝑘 in
one line. Any operation of the other form requires no output but may affect subsequent outputs.

Technical Specification

 𝑛𝑛 ≤ 500000.

Example

Sample Input: Sample Output:

7

1 3 2 2 1 3 1

sum 7

update 4 1

sum 5

update 4 1

13

8

10

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem A
update 2 2

update 3 2

sum 6

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem B
Path Sum Decision Problem

(Time Limit: 1 second)

Given a binary tree, we define a "root-to-leaf path" to be a sequence of nodes in the tree starting
from the root and proceeding downward to a leaf node (a node without child). Suppose that a
positive integer value, di, is assigned to the data field of each node ni, for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, in a tree. N is
the number of nodes in the tree. Note that an empty tree contains no root-to-leaf paths. For example,
the following tree has exactly four root-to-leaf paths:

The four root-to-leaf paths are:
 path 1: 8-10-3-4
 path 2: 8-10-6
 path 3: 8-9-12
 path 4: 8-9-7

For the path sum decision problem, we will be concerned with the sum of the values of such a
path -- for example, the sum of the values on the 8-10-3-4 path is 8 + 10 + 3 + 4 = 25. Given a binary
tree BT and an integer S. The path sum decision problem is to determine whether there exists a
root-to-leaf path in the tree such that the sum of the values in the path is equal to S?

Write a program to solve the path sum decision problem. The input contains a binary tree BT
and a positive integer S, and the output will be “True” or “False”. The binary tree is represented by a
specific format described later. Given BT and S, the program outputs “True” if the tree has a
root-to-leaf path such that the sum of the values along the path is equal to the given S. Output “False”
if no such path can be found. For example, for the above binary tree, the answer will be “True” if S =
25; “False” when S = 21.

As for representation of a binary tree, it is given by format of preorder with appended “0”s. That

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem B
is, beside the preorder representation, a “0” is appended after the node value if a node has no left
child. The same is for the node does not have a right child. For example, the above binary tree is
represented by the following sequence:

8 10 3 4 0 0 0 6 0 0 9 12 0 0 7 0 0

Note that each positive integer indicates the data value in the corresponding node, and a “0”
indicates a termination (neither left child nor right child). Two adjacent numbers are separated by a
blank space.

Input Format

The input file contains several test cases. The first line is an integer T indicating the number of
test cases. The following lines denote the test cases. Each test case is composed of two lines. The
first line is the sequence representing a binary tree, and the second line is a positive integer indicating
the given value of S.

Output Format

For each test case, output one line of “True” if the tree has a root-to-leaf path such that the sum
of the values along the path is equal to the given S. Otherwise, output “False” if no such path exists.

Technical Specifications

 N is the number of nodes in the tree, 1 ≤ 𝑁𝑁 ≤ 20.
 𝑑𝑑𝑖𝑖 is a positive integer, 1 ≤ 𝑑𝑑𝑖𝑖 ≤ 99, for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁.
 S is a positive integer, 1 ≤ S ≤ 10000.
 There are at most 10 test cases, i.e., 𝑇𝑇 ≤ 10.

Example

Sample Input: Sample Output:

4

6 3 0 0 2 8 0 0 0

16

6 3 0 0 2 8 0 0 0

8

10 11 0 7 0 0 12 6 0 0 5 0 0

True

False

False

True

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

3

Problem B
21

10 11 0 7 0 0 12 6 0 0 5 0 0

28

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem C
Roman Numerals

(Time Limit: 1 second)

Game of Thrones is an American fantasy drama television series. You may notice that there are
special notations of numbers. For example, “IV” represents 4 and “XIII” represents 13. These
notations are called Roman numerals. The numeric system represented by Roman numerals
originated in ancient Rome and remained the usual way of writing numbers today. Numbers in this
system are represented by combinations of letters of Latin alphabet. Roman numeral representations
are based on seven symbols:

Symbol I V X L C D M
Value 1 5 10 50 100 500 1000

The patterns of Roman numerals are as follows:

1. Repeating a numeral up to three times represents addition of the numbers. For example, III
represents 1 + 1 + 1 = 3. Only I, X, C, and M can be repeated; V, L, and D cannot be, and
there is no need to do so.

2. Writing numerals that decrease from left to right represents addition of the numbers.
For example, LX represents 50 + 10 = 60 and XVI represents 10 + 5 + 1 = 16.

3. To write a number that otherwise would take repeating of a numeral four or more times,
there is a subtraction rule. Writing a smaller numeral to the left of a larger numeral
represents subtraction. For example, IV represents 5 - 1 = 4 and IX represents 10 - 1 = 9.

Please write a program to calculate the values of Roman numerals.

Input Format

The input contains several test cases, each of which appears on a line. Notice that there may be
invalid input symbols which may break any of Roman numeral rules.

Output Format

Print out the values of input Roman numerals line-by-line. For an invalid test case, print a 0.

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem C
Technical Specifications

 A string contains any undefined character (not one of the 7 symbols in the above table) is
invalid.

 Repeating a character over 4 times is invalid.
 Value of input Roman numerals is guaranteed to be within the range from 1 to 3999.

Example

Sample Input: Sample Output:

IV

IIII

XXIV

MLXAI

XCIX

CDLXXXVII

DCLXXXIX

MDCCLXXVI

MCMLIV

MCMXC

MMXVIII

MMMCMXCIX

4

0

24

0

99

487

689

1776

1954

1990

2018

3999

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem D
Trinity

(Time Limit: 1 second)

Let P = {p1, p2, …, pn} be a set of n points in a 2-dimensional space. We say that 3 distinct
points pi, pj and pk in P form a trinity, denoted by [pi, pj, pk], if the distance between pi and pj is equal
to the distance between pi and pk. The first point pi is called the pivot of the trinity.

For example, assume that there are 3 points {(2, 2), (3, 2), (2, 1)} in 2-dimensioinal space. Let
p1, p2, and p3 be (2, 2), (3, 2) and (2, 1), respectively. Then [p1, p2, p3] is a trinity, and p1 is the pivot.
Note that if we choose p2 as the pivot, then [p2, p1, p3] is not a trinity, as the distance between (3, 2)
and (2, 2) is not equal to the distance between (3, 2) and (2, 1). Also note that [(2, 2), (3, 2), (3, 3)] is
not a trinity either, as the distance between (2, 2) and (3, 2) is not equal to the distance between (2, 2)
and (3, 3).

Figure 1 shows 4 points, p1, p2, p3 and p4, in a 2-dimensioinal space. Assume that p1 is the pivot,
we can find three trinities. They are [p1, p2, p3], [p1, p2, p4], and [p1, p3, p4]. The order of the second
and the third points are not important. Therefore, [pi, x, y] and [pi, y, x] are considered as the same
trinity.

Figure 1. Four points in a 2-dimensional space.

Given a set of n points in 2-dimensional space, write a program to compute the number of
trinities in the given points. For example, in Figure 1, there are 4 trinities: [p1, p2, p3], [p1, p2, p4], [p1,
p3, p4], and [p4, p2, p3].

Input Format

The first line is a number indicating the number of test cases. There are at most 5 test cases.

The first line of each test case contains an integer T (0 ≤ T ≤ 600), representing the number of
points in this test case. Each of the next T lines contains a pair of integers x, and y. Note that x and y

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem D
are separated by a space. Both x and y are integers, and 0 ≤ 𝑥𝑥,𝑦𝑦 ≤ 10000.

Output Format

For each test case, print the number of trinities on one line.

Technical Specification

Example

Sample Input: Sample Output:

2

0

3

2 2

3 2

2 1

0

1

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem E
City Surveillance System

(Time Limit: 1 second)

In Tree City, the roads are straight and connected in a tree structure, a structure without any
cycles. One day, Tree City mayor decided to build a City Surveillance System for public safety. The
system will have some cameras installed at the crossroads and dead ends to watch all the city roads.
Crossroads and dead ends are regarded as the guarded points. Two guarded points are adjacent if they
are respectively at the two ends of the same road. The camera installed at a certain guarded point can
watch all the roads incident to it. The distance between any two adjacent guarded points is the same
as the watching distance of a camera. The placement of the cameras has to satisfy the following two
requirements: (1) each guarded point has at most one camera installed and (2) each camera must be
watched at least by a camera placed at any adjacent guarded point to prevent malicious damage. For
example, the placement of cameras (black guarded points) satisfies the requirements in Figure 1 but
not in Figure 2.

Figure 1. Satisfied placement Figure 2. Unsatisfied placement

Please write a program to compute the minimum number of required cameras to watch all the

city roads.

Input Format

The first line is a number indicating the number of test cases. For each test case, the first line is
an integer n, 2 ≤ n ≤ 10000, which indicates the number of guarded points. Each of the next n-1 lines
consists of two integers separated by a space, which indicates the indices of two adjacent guarded
points of a road.

Output Format

For each test case, output the minimum number of cameras, which satisfies the requirement of
the problem.

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem E
Technical Specifications

 There are at most 10 test cases.
 There are n guarded points, 2 ≤ n ≤ 10000. Each guarded point has a unique index between

1 and n and its index is larger than the index of its parent except the root (index 1).

Example

Sample Input: Sample Output:

2

4

1 2

1 3

1 4

5

1 2

2 3

3 4

4 5

2

3

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem F
Special N-Queen Problem

(Time Limit: 3 seconds)

Given a number n, it is interesting to know the number of ways to place n queens on an n by n
chessboard such that each queen attacks no queens. Here a queen can attack others horizontally,
vertically, left to right diagonally, and right to left diagonally. Moreover, if we pre-place an obstacle
at a special position where any queen cannot be placed and pre-place one queen at a special position,
then we are interested in the number of ways to place n - 1 queens such that any queen attacks no
queens?

For example, let n = 8, the pre-placed queen Ⓠ be at (0,0), and the obstacle ⊗ be at (1,6).
There are only two ways to place n - 1 queens such that any queen attacks no queens as follows.

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Ⓠ 0 Ⓠ
1 Q ⊗ 1 Q ⊗
2 Q 2 Q
3 Q 3 Q
4 Q 4 Q
5 Q 5 Q
6 Q 6 Q
7 Q 7 Q

Input Format

The first line is a number indicating the number of test cases. Each test case has one number n,
two integers indicating the position of a pre-placed queen and two integers indicating the position of
an obstacle. The pre-placed queen’s position and the obstacle’s position are not the same.

Output Format

For each test case, please output the number of ways to place other queens such that any queen
attacks no queens.

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem F
Technical Specification

 There are at most 10 test cases.
 The value of n is at most 14.

Example

Sample Input: Sample Output:

2

8 0 0 1 6

8 0 7 1 2

2

3

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem G
Profit Maximization

(Time Limit: 1 second)

A part-time worker has n part-time job opportunities, each of which has its own clock-in time s,
clock-out time f, and wage p. The part-time worker can only do a part-time job at a time. In other
words, the part-time worker cannot simultaneously do two different part-time jobs. For example, if
the working hours of a part-time job A and a part-time job B are respectively from 4 (i.e., s = 4) to 8
(i.e., f = 8) and from 6 (i.e., s = 6) to 10 (i.e., f = 10), the part-time worker can only select either the
part-time job A or the part-time job B. Note that if the clock-out time of a job is the same as the
clock-in time of another job (i.e., f1 = 4 and s2 = 4), these two jobs are conflict free. So, the part-time
worker needs to select a set J of non-conflict part-time jobs from n part-time job opportunities to
maximize his/her earning (or the total amount of wages ∑ 𝑝𝑝𝑗𝑗𝑗𝑗 ∈ 𝐽𝐽).

For example, Table 1 lists four part-time job opportunities n1, n2, n3, and n4. If a part-time
worker wants to get the maximum amount of wages, he/she should do n1 and n4 because n1 and n4
form a non-conflict job set (i.e., J = {n1, n4}) that maximizes his/her earning. Although n1, n2, and n3
are also conflict-free, the total amount of wages is only 170 if they are selected. Note that the
part-time worker cannot do n3 and n4 at the same time because of the overlap of working hours.

Table 1. Part-time job opportunities
Job Clock-in time (s) Clock-out time (f) Wage (p)
n1 1 2 50
n2 3 5 20
n3 6 19 100
n4 2 20 200

Given a set of part-time job opportunities, write a program to find a non-conflict job set that will
maximize the total amount of wages.

Input Format

The first line is an integer n indicating the number of part-time job opportunities. Each of the
next n lines has three parameters s, f, and p, which indicate a job’s clock-in time, clock-out time, and
wage.

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem G
Output Format

For each test case, please output the maximum amount of wages, which is obtained from a set of
non-conflict part-time jobs.

Technical Specification

 There are at most 30 test cases.
 𝟏𝟏 ≤ 𝐧𝐧 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐.
 𝟏𝟏 ≤ 𝒔𝒔 ≤ 𝟑𝟑𝟑𝟑𝟑𝟑.
 𝐬𝐬 < 𝒇𝒇 ≤ 𝟒𝟒𝟒𝟒𝟒𝟒
 𝟏𝟏 ≤ 𝒑𝒑 ≤ 𝟓𝟓𝟓𝟓𝟓𝟓.

Example

Sample Input: Sample Output:

3

1, 2, 50

3, 5, 20

6, 19, 100

4

1, 2, 50

3, 5, 20

6, 19, 100

2, 100, 200

170

250

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem H
Maximizing Cryptocurrency Mining Profit

(Time limit: 1 second)

A cryptocurrency, such as Bitcoin or Ethereum, is a digital asset designed to work as a medium
of exchange that uses cryptography to secure its transactions, to control the creation of additional
units, and to verify the transfer of assets.

There are no central authorities in a cryptocurrency system. Blockchains are commonly used for
a publicly accessible ledger of transactions. For simplicity, a blockchain is a chain of blocks. Each
block contains a set of transactions, as well as other information, such as digital signatures, hash
values, the nonce, etc.

In a cryptocurrency system, mining is a validation of transactions. A miner computes the value
of the nonce in a block so that the hash value of the block is within a predefined range. There are no
known efficient algorithms to compute proper value of the nonce, and mining usually takes quite a
long time to succeed. For example, it usually takes 10 minutes to generate a new block in Bitcoin.
For this effort, successful miners obtain new cryptocurrency as a reward.

In this problem, assume that many transactions can be collected into a block, and the owner of
the transaction can offer a bigger amount of profit so that the transaction will be selected and
processed quicker.

Mathematically, let T be a set of n transactions, T = {t1, t2, …, tn}. The size of each transaction ti
is si, and its profit is pi. A miner can collect any subset of T into a block, as long as the sum of the
sizes of the selected transactions is no more than S, where S is the capacity of a block.

Write a program to select a subset of transactions in T into a block in a way that the profit of the
successful mining of that block is maximized.

Input Format

The input file may contain many test cases. Each test case contains a positive integer n in a line.
The second line contains n sizes s1, s2, …, sn. The third line contains n profits p1, p2, …, pn. The last
line of the test case contains the capacity of a block S. They are all nonnegative integers.
Furthermore,

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

2

Problem H
1. n ≤ 200,

2. si, ti ≤ 108, and

3. S < 109.

The last line of the input file is 0. Your program must exit if this line is reached.

Output Format

For each test case print the maximum profit which can be achieved for a block.

Examples

Input Output
4 46
6 3 4 2
30 14 16 9
10
5 48
2 6 3 4 2
9 30 14 16 9
10
0

第八屆全國私立大專校院程式競賽
National Contest for Private Universities (NCPU), 2018

1

Problem I
Lucky Date

(Time Limit: 3 seconds)

There are 365 days in a year, except for the leap years. Some people think that a date consisting
of at most two digits is a “Lucky Date”. For example, 0101 is 1/1, which has two digits, 0 and 1, so
we call 1/1 a Lucky Date. Instead, 0328 is 3/28, which has four digits, 0, 2, 3 and 8, so we will not
call 3/28 a Lucky Date. As an exception, 4/4 is a date for death and is not a Lucky Date.

Please find the number of Lucky Dates between and including two given dates, d1 and d2. If d1
precedes or equals d2, they are in the same year. Otherwise, d1 is in one year and d2 is in the next
year. The interval between any two given dates is at most one year. No leap years are considered.

Input Format

The first line contains an integer n, indicating the number of test cases. Each of the following n
lines contains two dates d1 and d2.

Output Format

For each test case, output the number of Lucky Dates between and including the two given
dates.

Technical Specification

 There are at most 20 test cases.
 𝟏𝟏 ≤ 𝒏𝒏 ≤ 𝟐𝟐𝟐𝟐.

Example

Sample Input: Sample Output:

3

1/1 1/2

4/3 4/5

12/31 1/5

1

0

1

